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Abstract

We describe a spectral method for the direct numerical calculation of the
time-dependent Schrodinger equation described in hyperspherical coordinates.
The method is based on the split-step technique where the wavefunction is
expanded in the appropriate eigenfunctions for the partial operators, making
the time integration efficient, accurate and simple. The fast Fourier transform
is applied to produce the expansion in the hyperradial direction, and a general
hyperspherical harmonics transformation is applied to create an expansion in
the angular directions. The latter transformation is set up by a combination of
spherical harmonics and Jacobi polynomials. The method is ideal to describe
correlated ionization dynamics of two-electron systems in strong fields and
other phenomena where a hyperradial expansion is efficient.

PACS numbers: 02.60.Cb, 02.70.Hm, 03.65.Ge

1. Introduction

The three-body problem remains a challenge in a range of areas of theoretical and
computational physics now more than 100 years after the monumental work of Poincaré,
showing its non-separability [1]. For example, in classical mechanics the non-separability is
one origin of chaos [2], while in quantum mechanics it plays a central role in the understanding
of three-particle structure in atomic [3, 4], nuclear [5] and particle physics [6]. In atomic
physics, recent research has been focused towards the understanding of the spectra of excited
and loosely bounded states [7].

It is well known that any three-body problem can be described by three sets of Jacobi
coordinates which decouple from the centre-of-mass motion, thus reducing the problem from
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a nine-dimensional problem to an effective six-dimensional problem. The advantage of the
Jacobi coordinates is that the Laplacian of the total system is a simple sum over the Laplacians
corresponding to each Jacobi coordinate. Hence, no polarization terms enter the description. In
atomic physics, the six-dimensional problem has been solved numerically for fully correlated
two-electron dynamics in the time domain based on a coarse Cartesian grid [8] or a spherical
basis functions’ expansion relating to each electron [9].

Alternatively, the problem may be addressed based on hyperspherical coordinates, i.e. a
hyperradius p = (Z?:, xiz)]/ ® and a set of five independent angles [10]. In structure theory,
this transformation has for more than 30 years been applied to classify excited and loosely
bound states in nuclear and atomic physics [3—5]. The advantage of these coordinates is a
near decoupling of the hyperradial coordinate from the angular part, which opens for Born—
Oppenheimer-like separation methods. Correlated break-up processes, caused by a strong
short laser pulse, are an example of a dynamical process which may be conveniently described
by hyperspherical coordinates. In fact, this process has very recently been studied in the time
domain based on a ‘close coupling’ expansion of the wavefunction in hyperspherical basis
states [11].

In this paper we develop an algorithm for direct numerical calculation of the solution to
the time-dependent Schrodinger equation in hyperspherical coordinates without reference to a
precalculated spectrum of basis states. In addition, no time-consuming calculations of matrix
elements of the operators are needed. The method is based on a splitting of the Hamiltonian
operator and is a generalization of the time-propagation algorithms for spherical geometry first
published by Hermann and Fleck for potentials with azimuthal symmetry [12], and recently
generalized to potentials of arbitrary spatial dependence [13]. In the following section the
mathematical problem is defined, followed by a section which describes the propagation
scheme. In section 4 we demonstrate the method on two well-known static problems and in
section 5 we conclude and comment on the application of the present method to time-dependent
problems.

2. The Schrodinger equation in hyperspherical coordinates

We consider three particles in three dimensions, i.e., nine degrees of freedom. The masses,
coordinates and momenta of the particles are m;, r; and p; (i = 1, 2, 3), and the total mass is
M = m + my + m3. The Hamiltonian is given by

3 2 3
A pi
H=Y) >+ Y Vy(r —rD)+ Ve(ry, r, 13,0), (1)
i=1

2mi

i=1;j>i

where V;; denotes the two-particle interactions between particles i and j, while Vg is a general
external time-dependent interaction. We follow [14] and for each i = 1, 2, 3 we define the ith
set of Jacobi coordinates (x;, y;) as

m;myj
X; = wjr(r; —rg), Wik = [ ———,
m(m; +my)

_ M T + My _ m;(m; +my)
Yi=pi | ————————— i = —————,
m;j +my

2
mM

where m is a normalization mass. Each of the sets {i, j, k} = {1, 2,3}, {2, 3,1}, {3, 1, 2}
combined with the centre-of-mass (CM) coordinate, MR = Z?:l m;r;, describes the system
completely.
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The space-fixed hyperspherical coordinates (,o, ai, 7, Q; ) are
X; = psing, yi = pcosa;, (3)

where p is the hyperradius and «; is the hyperangle confined by 0 < «; < 7 /2. For clarity,
we suppress the i-index in the rest of this exposition.

The angular parts of x and y are denoted by Q* and ¥, each representing a pair of
spherical angles (6, ¢). The total set of five angular coordinates o, 2*, ¥ is denoted by €.
The corresponding volume element is

dxdy = p> dp sin® & cos? o dor dQ* A2

= p’dpdQ. “)
The kinetic energy operator in hyperspherical coordinates is given by
f=ﬁ|:_8_2_§i+ﬁ:| (5)
2m | 9p* pop  p? |
A* = e 4cot(2a;) — + h i (6)
da? “da  sin?a cos?a’

where l)zc and / i are the angular momentum operators corresponding to x and y, respectively
[10].
Expressed in hyperspherical and CM coordinates, equation (1) becomes
oo
H=_—+T+ Vij(p, )+ Ve(p, 2,1), @)
2M =
i=1;j>i

where P is the centre-of-mass momentum which is decoupled from the internal hyperspherical
coordinates. The solution for the centre-of-mass motion is thus trivial and the remaining
challenge becomes to solve the internal problem. We note that the expression for the potentials
in hyperspherical coordinates may be quite involved. For Coulombic interactions however,
the expression is relatively simple and given explicitly in [19].

3. The propagation scheme

The time-dependent Schrodinger equation for the internal problem in the chosen set of
hyperspherical coordinates is

3 .
oW = (T + V)W, (8)

with W(p, 2, 1) the wavefunction, 7 defined in equation (5) and the total potential is
V = Z?:l;j>i Vij(p, ) + VE(p, 2,1). Defining the reduced wavefunction W(p, 2,t) =
®(p, Q2,1)/p>'? and plugging in for T, we arrive at the equation

9 B2 | 92 A?2+15/4
ih—® = [ cp——/

ot 2m

g p d>:| +VO, 9)

which is at the heart of the present method. The solution of this equation is based on a
generalization of our recent split-operator algorithm for two-particle dynamics [13]. We

. a2 2 ~ . . .
introduce A = —2 22 and B = 2;2,;2 (A% + 15/4) and write the wavefunction at time ¢ + At

. 2m dp?
with At small as

—iAtB —iAtV —iAtB —iA

Dt+Af)=e T e o e i e e 3 d(r)+OAL). (10)
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The error term represents the splitting error and it disappears when the operators commute.
For time-dependent potentials, the linear Hamiltonian we are working with has an error term
(~ZYX Ar?), i.e. of second order [15].

The spatial approximation is based on an expansion of the reduced wavefunction
®(p, 2, t) in the hyperspherical harmonics of equation (19), defined on a finite set of points
{0i, 2;},

@ (i, Q). 1) = Y felpi, DIVe()), (11)
K
with K denoting the set of hyperspherical quantum numbers K = K(n, I, [,). The functions

Yni,.1,)(§2) are an orthonormal set of eigenfunctions of the ‘grand’ angular momentum
operator of equation (6) with eigenvalues K (K +4), i.e.

AV, 1,)(Q) = K (K + D)V 1, (). (12)
Here, K is the quantum number defined by
K =2n+1+1,. (13)

The application of the time operator of equation (10) involves first that each fx-(p, t) is
calculated by the projection

felpit) = /dsz V@D (o1, 2. 1). (14)
Then, each fi(p;, t) is represented in momentum space,
felpint) =) gics e/ Pmoker, (15)
k

by applying a fast Fourier transform. Here, pnax denotes the grid size in the hyperradius p.
Applying the kinetic energy operator then results in a multiplicative factor on each Fourier
component, i.e.

ZiArA (77 / pmax ) 2Tk JAm At

€% grr=¢ 8KC.k- (16)

The inverse Fourier transform is then applied, and the effect of the ‘grand’ angular momentum
operator is evaluated as

i, —iAt(K (K+4)+15/4) 1
e M fie(pi ) = e " fic(pi 1) amn

Then, the total wavefunction is reconstructed by equation (11) and the propagator of the
external potential is evaluated by

®(pi, Qj, 1+ Ar) = e VOO D (o, Q1) (18)

Finally, the operations of equations (14)—(17) are repeated in inverse order to complete the
propagation of a single time step. The procedure continues a specified number of time steps
to obtain the final wavefunction. The initial wavefunction can be found by propagation in
imaginary time as described in section 5.

4. The hyperspherical expansion

The complete set of normalized hyperspherical harmonics is given, in the product
representation, as

Voot () = ¢ (cos o)) [V, m, (29 Y), m, (27)], (19)
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where Y, (£2*) and Ylymy(Qy ), the standard orthonormal spherical harmonics, are the
simultaneous eigenfunctions of lz and ZA%, respectively. Here the function, qb("*”’ﬁ), is the
normalized nth degree Jacobi polynomial which, with x = cos(2«), forms an orthogonal set

under the inner product

1
(f. 8 = /ldxw(X)f(X)g(X), (20)

w(x) being the weight function w(x) = (1 — x)” (1 + x)?. In our computation, we apply the
variable transformation x = cos(2«), corresponding to equation (3).

The quantum numbers n, [, and [, are input parameters of the algorithm and for a given
set of these it is important to reconstruct K. The solutions can be ordered into degenerated
subspaces according to each value of K = 0,1,2,... with parity (—1)X. In structure
calculations, it is beneficial to apply linear combinations of these basis functions which directly
relates to the symmetries of the various states [4]. In the present numerical implementation,
there is no need to do this.

The main challenge of the above-outlined algorithm is to construct a discrete
representation and the associated transformation for the hyperspherical harmonics which
is unitary and thus conserves the norm. For any set of quantum numbers X in the expansion
equation (11), we need a quadrature rule over the hypersphere which satisfies

No
S = /Q AQVEQVe () = > w2V (), @1
i=1
with minimum number, Ngq, of hyperangular mesh points €2; and associated weights w;. The
present construction rests on our recent procedure [13] for the three-dimensional problem and
it is therefore instructive to review this procedure first.

For fixed m of the spherical harmonics, Y; ,, (6, ¢), the discrete representation maintains
the unitarian property if the 8;’s are chosen as the Gauss—Jacobi quadrature points with weight
function determined by m [12]. However, when the azimuthal symmetry in V is broken,
m is not conserved, and consequently the Gauss—Jacobi points and weights depend on m
which again makes the method unattractive. This implies that a direct discretization of the
orthonormalization relation for spherical harmonics,

81 8mm = f sin® do dg Y, ()Y, (2Y), (22)

cannot be constructed along these lines. The standard solution from related mathematical
physics has been to re-expand the spherical harmonics in a basis of associated Legendre
polynomials P/"(9) and a Fourier basis in ¢ on a regular grid, since Y, (6, ¢) = P/" () elmd.
Alternatively, we may take any interpolatory quadrature rule over the sphere which integrates
exactly all polynomials of degree less than or equal to 2/,,,x. Recently, abscissas and weights
for such rules were computed [16] and made available over the Internet [17]. Taking Q)j‘ , W
as the set of abscissas and weights then ensures that the standard orthogonality property is
fulfilled:

N‘(
Sl.l’Sm,m/ = Z w; Yfm/ (Q)/C) YZ’” (Q/;)’ (23)
j=1

based on Ny = lpax + 1)? grid points.

This integration procedure can be directly applied for the two spherical harmonics which
is needed to construct Yy, cf equation (19). In addition, a similar procedure for the Jacobi
polynomials must be constructed. To evaluate the coefficients of an expansion in a specific
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set of Jacobi polynomials, the appropriate integrals should be evaluated by a Gauss—Jacobi
quadrature rule which takes as its abscissa set the N; zeros of P;(,;ﬁ (x). [18]. Software for
calculating the appropriate abscissas and weights based on [18] is available online and is used
in our routines. For a given specification of Ny, [, I, , we here need a common set of
grid points which is independent of the actual values of n, [, and /,. However, the different
weight functions produce different abscissa sets. We circumvent this problem by taking as our
fundamental set of Jacobi polynomials those corresponding to y = 8 = 1/2. We then simply
compute

Xmax ?

gxy) = (L+x)" (1 —x)"®(p, x;, 2, Q") (24)
and evaluate
N
Lo+1/2,0,+1/2 nlx. L+1/2,1,4+1/2
cn+/ y+1/ =Zw; 1 ly)Pn+/ '+/(x_,-), (25)
j=0
where
w;n,lx,ly) — g(x])(l +-xj)l/2(1 X )1/2 (26)

While these coefficients will be evaluated exactly for any ®(p, x;, *, %) being a polynomial
in x of degree less than or equal to N,, this is no longer the case when using (25). To obtain
the same accuracy and ensure orthogonality of the discrete basis functions when [, + [, > 0,
we now need a quadrature rule which integrates polynomials of degree 2N; — 1 +1,__ +l
This will be the one based on PI:,/ 2+(1,/ ix )2 (x).
Equation (21) can finally be expressed as

Ymax *

Nq
Sk = /dQ V()Y (2) = Zwiy}é(ﬂi)y/c(ﬂi) 27
i=l
N, N, Ny
= WhrW wky,c oy, Q);, QZ)y;Q (Olh, Q)j, Q])(), (28)
h=1 j=1 k=1

with the total number of points No = Ny N,N, = (21 + 1)2(2lymax + 1)2(N oty 1).
Each of the expansion coefficients of equation (14) is calculated by this summation with
Vi replaced by ®. This calculation dominates the total cost of one time step, while the time
propagation itself (equations (16) and (17)) is much less.
We note that the present algorithm is unitary and thus completely conserves the norm of
the wavefunction for all real potentials.

Xmax Xmax

5. Test examples

In this section we demonstrate the method by calculating the ground state on a chosen grid
by the method of imaginary time propagation, i.e. by letting + — —it in equation (10).
This method is an ideal starting point for obtaining the spectrum of any time-independent
Hamiltonian. The propagation becomes

®[i(r + AT)] = e AT P (i), 29)

Thus, by starting the propagation at T = 0 with an arbitrary wavefunction, it evolves in terms
of the spectrum of eigenstates &, as

PL(t+AD)] =Y ca(r) e T/, (). (30)

n=0
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Figure 1. The three lowest squared hyperradial eigenstates of the six-dimensional Coulomb
problem. Solid line: K = 0; dashed line: K = 1; dash-dotted line: K = 2.

The effect of the propagator is to exponentially damp all excited states compared with the
ground state and thus leaving only the ground state, i.e. lim; .o, ®(t) = &y(r) e~ A8/ with
&o being the ground-state energy. In the following we demonstrate the applicability of the
algorithm by obtaining a set of known initial states on the grid when starting from a random
initial state, in this case Vi, j : ®(p;, 2;, 7 = 0) = 1. For simplicity, atomic units are used
(h = m, = e = 1) in the remaining part of this section.

5.1. Six-dimensional hydrogen atom

The analytic Coulomb problem in d dimensions is well known [20]. For d = 5, it corresponds
directly to the present method. To single out any state of the spectrum, we introduce the
hyperradial projection Coulomb potential
<[/ d Ve (][ d2 Ve (€2)]-
V=V()=— / pf & : €1V
where the integral operators act to the left and right as indicated by subscript arrows. For this
potential, the time-independent Schrodinger equation may be brought to the form

13> (K(K+d-2) 1
———+——= — — | R, =&, kR, , 32
( 292 207 ,o) Kk (P) = €nx Ry k (P) (32)
where R, x (p) is the hyperradial wavefunction. The energies are given by
1
En = — (33)

2[n+1/2(d — 3)]1*’
with n > K + 1. The three lowest states are obtained by imaginary time propagation with
K = 1,2 and 3 for a hyperradial grid with 128 points as displayed in figure 1. For At = 1072,
the ground state is obtained within 0.1% accuracy in energy after 10* time steps.

5.2. Helium ground state

As another example to describe the present methodology and to gauge the accuracy of the
method, we consider the helium ground state. We note that correlated two-electron dynamics
as reflected, e.g., in non-sequential double ionization of He by intense laser fields or heavy-ion
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Table 1. Convergence to the exact ground-state energy of helium for different maxima in a number
of a points and [y, [,. The exact ground-state energy is Eexac = —2.904 au.

(Mmaxs Limay > Lymax ) Energy (au)

(4,0,0) —1.0488
@ 1,1 —2.4801
@,2,2) —2.7254
(6,0,0) —1.2803
6,1,1) —2.5782
6,2,2) —2.8716
(8,0,0) —1.4329
@, 1,1 —2.8524
(8,2,2) —2.8981

impact, are areas where the present method is expected to be very useful. Since reliable results
on dynamics require an accurate atomic structure, it is therefore interesting to see how well
the method works for the He ground state itself.

For the present investigation, we choose a small radial grid of pp,x = 6 au, with 32
radial points, a time step of 0.03 au and a propagation time of 10 au. The exact ground-state
energy excluding effects of the moving nuclei, radiative and relativistic effects is known to an
accuracy of about one part in 10'° [21] and is obtained by a variational procedure involving
sophisticated trial functions and a basis set containing 2114 terms. For our purposes, the value
—2.904 au will be taken as the exact result. We assume an infinitely heavy mass. This means
that the coordinates of the electrons are given directly in terms of the Jacobi coordinates as
r; = x; and r, = y,, respectively.

In table 1, we show the He ground-state energies found for different values of npmgx, Iy,
and [, . From the table, we note that the convergence is sensitive to all angular variables. We
found that the results for the energies were much less sensitive to the radial grid, and therefore
we do not consider the convergence behaviour in that variable. The calculational time ranged
from a few seconds to a couple of minutes on an IBM Regatta using four processors.

6. Conclusion and outlook

In this paper we have described a spectral split-step algorithm for numerical solution of
the time-dependent Schrodinger equation on a discrete hyperspherical grid. The method is a
generalization and an extension of an analogous algorithm for the three-dimensional problems.
It turns out that when the appropriate transformation rule based on the angular coordinates
can be constructed, the six-dimensional, or in general N-dimensional, algorithm are identical.
This implies that an optimized and parallel code in three dimensions can be directly extended
to any dimension by providing the dimension-specific angular transformation. Research in
this direction is in progress.

In the near future, we plan to apply the present algorithm to an investigation of two-
electron effects in helium and molecular hydrogen when these systems are subject to intense
coherent pulses of short duration and high frequency.
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